Monoids of modules over rings of infinite Cohen-Macaulay type
نویسندگان
چکیده
منابع مشابه
Maximal Cohen-macaulay Modules over Hypersurface Rings
This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.
متن کاملCohen-macaulay Modules and Holonomic Modules over Filtered Rings
We study Gorenstein dimension and grade of a module M over a filtered ring whose assosiated graded ring is a commutative Noetherian ring. An equality or an inequality between these invariants of a filtered module and its associated graded module is the most valuable property for an investigation of filtered rings. We prove an inequality G-dimM ≤ G-dimgrM and an equality gradeM = grade grM , whe...
متن کاملLocal Rings of Finite Cohen-macaulay Type
Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...
متن کاملOn Cohen-Macaulay rings
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Commutative Algebra
سال: 2012
ISSN: 1939-2346
DOI: 10.1216/jca-2012-4-3-297